Cryptography for IT $7^{\text {th }}$ Sem Students

Developed and Presented By:

Dileep Kumar Yadav
Assistant professor Dept. of CSE
V.B.S PU,Jaunpur

Mb. No. 8726943272
Email-dileep1482@gmail.com

Types of Cryptography

- Symmetric Key Cryptography
- Asymmetric Key Cryptography

Symmetric Key Cryptography

- If the same key is used for encryption and decryption process then it is called symmetric key cryptography.
- There are some techniques by which we can encrypt or decrypt the message like:
- DES,IDEA,RC5,BLOWFISH AND AES and so on.

Minimum Size of Key

- Minimum size of key=1 bit=0 or 1

$$
\begin{aligned}
& 2 \text { bit }=2^{\wedge} 2=4=00,01,11,10 \\
& 4 \text { bit }=2^{\wedge} 4=16 \\
& 16 \text { bit }=2^{\wedge} 16=64 \mathrm{k}=65536 \mathrm{NS} \\
& =65536 / 10^{\wedge 9}
\end{aligned}
$$

$$
=\text { near about } 1 \sec (\text { less than })
$$

$$
32 \text { bit }=2^{\wedge} 32=2^{\wedge} 16 \times 2^{\wedge} 16=65536 \times 65536 \mathrm{~ns}
$$

$$
=\text { near about } 4.2 \mathrm{sec}
$$

64 bit $=2^{\wedge} 64=2^{\wedge} 32 \times 2^{\wedge} 32 \mathrm{~ns}$
$=584.46$ years
=nearly 600 years

How to Exchange the Key Safely

 Diffie- Hellman Key Exchange Algorithm- Firstly Alice and Bob agree on two large prime no. n and g. These two integers need not be kept secret. Alice and Bob can use an insecure channel to agree on them.
- Alice choose another large number x and calculate A such that:

$$
A=g^{\wedge} x \bmod n
$$

- Alice sends the number A to Bob.
- Bob independently choose another large random integer y and calculate B such that:
$\mathrm{B}=\mathrm{g}^{\wedge} \mathrm{y}$ mode n

Cont...

- Bob sends the number B to Alice.
- Now A computes the secret key k1 as follows: $\mathrm{k} 1=\mathrm{B}^{\wedge} \mathrm{x} \bmod \mathrm{n}$
- Now B computes the secret key k2 as follows: $\mathrm{k} 2=\mathrm{A}^{\wedge} \mathrm{y} \bmod \mathrm{n}$
- So if $\mathrm{k} 1=\mathrm{k} 2=\mathrm{k}$ then we follow this algorithms

Example

- For example let $\mathrm{n}=11, \mathrm{~g}=7$ and $\mathrm{x}=3, \mathrm{y}=6$ calculate A, B and k1,k2.
- Here $\mathrm{n}=11, \mathrm{~g}=7$
- $A=g^{\wedge} x \bmod n$
$=7 \wedge 3 \bmod 11$
$=343 \bmod 11$
=2
- Alice sends the 2 to Bob.

Cont...

- $B=g^{\wedge} y \bmod n$
$=7 \wedge 6 \bmod 11$
$=117649 \bmod 11$
$=4$
- Bob sends 4 to Alice.
- $\mathrm{K} 1=\mathrm{B}^{\wedge} \mathrm{x} \bmod \mathrm{n}$
$=4^{\wedge} 3 \bmod 11$
$=9$

Cont..

- $\mathrm{K} 2=\mathrm{A}^{\wedge} \mathrm{Y} \bmod \mathrm{n}$
$=2^{\wedge} 6 \bmod 11$
$=64 \bmod 11$
=9
- So k1=k2=9

Problem of Diffie Algorithms

- Number of keys as well as key exchange.
- Expensive in complexity like time and space complexity.
- Man in the middle attack.

Man in the Middle Attack

- Alice
$\mathrm{n}=11, \mathrm{~g}=7$
$\mathrm{x}=3$
$\mathrm{A}=\mathrm{g}^{\wedge} \mathrm{x} \bmod \mathrm{n}$
$=7 \wedge 3 \bmod 11$
$=343 \bmod 11$
$\mathrm{A}=2$

Tom
$\mathrm{n}=11, \mathrm{~g}=7$
$\mathrm{x}=8, \mathrm{y}=6$
$A=g^{\wedge} x \bmod n \quad A=g^{\wedge} x \bmod n$
$=7 \wedge 8 \bmod 11 \quad=7 \wedge 9 \bmod 11$
$=5764801 \bmod 11=4035360 \bmod 11$
$\mathrm{A}=9 \quad \mathrm{~A}=8$
$B=g^{\wedge} \bmod n$
$=7^{\wedge} 6 \bmod 11$
$=117649 \bmod 11$
$B=4$

Bob

$$
\mathrm{n}=11, \mathrm{~g}=7
$$

$$
y=9
$$

Cont...

- Alice
$\mathrm{A}=2$
- $\mathrm{A}=2, \mathrm{~B}^{*}=4$
- $K 1=B^{\wedge} x \bmod n$
$=4^{\wedge} 3 \bmod 11$

$$
\begin{aligned}
& \text { Tom }
\end{aligned}
$$

Cont...

- Alice
$=64 \bmod 11$
$\mathrm{A}=9$

$$
\left.\begin{array}{rlr}
& \text { Tom } & \text { Bob } \\
= & 16777216 \bmod 11 & =387420489 \bmod 11 \\
= & =\Omega
\end{array}\right)
$$

Reference

- Cryptography and network security "Atul Kahate" 3e,Mc Graw hill education.

